ECS2100-10T/PE/P
ECS2100-28T/P/PP 10/28-Port Web-Smart Pro Gigabit Ethernet Switch

Installation Guide

Installation Guide

ECS2100-10T Gigabit Ethernet Switch

Web-Smart Pro Gigabit Ethernet Switch with 8 10/100/1000BASE-T (RJ-45) Ports and 2 Gigabit SFP Ports

ECS2100-10PE Gigabit Ethernet Switch

Web-Smart Pro Gigabit Ethernet Switch with 8 10/100/1000BASE-T (RJ-45) 802.3 af/at PoE Ports and 2 Gigabit SFP Ports (PoE Power Budget: 65 W)

ECS2100-10P Gigabit Ethernet Switch

Web-Smart Pro Gigabit Ethernet Switch with 8 10/100/1000BASE-T (RJ-45) 802.3 af/at PoE Ports and 2 Gigabit SFP Ports
(PoE Power Budget: 125 W)

ECS2100-28T Gigabit Ethernet Switch

Web-Smart Pro Gigabit Ethernet Switch with 24 10/100/1000BASE-T (RJ-45) Ports and 4 Gigabit SFP Ports

ECS2100-28P Gigabit Ethernet Switch

Web-Smart Pro Gigabit Ethernet Switch with 24 10/100/1000BASE-T (RJ-45) 802.3 af/at PoE Ports and 4 Gigabit SFP Ports
(PoE Power Budget: 200 W)

ECS2100-28PP Gigabit Ethernet Switch

Web-Smart Pro Gigabit Ethernet Switch with 24 10/100/1000BASE-T (RJ-45) 802.3 af/at PoE Ports and 4 Gigabit SFP Ports
(PoE Power Budget: 370 W, can extend to 740 W)

How to Use This Guide

This guide includes detailed information on the switch hardware, including network ports, power, cabling requirements, as well as plug-in modules and transceivers. This guide also provides general installation guidelines and recommended procedures. To deploy this switch effectively and ensure troublefree operation it is recommended to first read the relevant sections in this guide so that you are familiar with all its hardware components.

Who Should Read This Guide?

This guide is for network administrators and support personnel that install, operate, and maintain network equipment. The guide assumes a basic working knowledge of LANs (Local Area Networks) and can be read by either those that are new to network equipment, or those with more experience.

The organization of this guide is based on the switch's main hardware components. Each chapter includes information about a specific component with relevant
specifications and installation procedures. A switch overview section is also provided.

For Users New to Switches - If you are new to network switches, it is recommended that you first read all chapters in this guide before installing the switch.

For Experienced Users - If you are already familiar with installing and operating network switches, the Switch Description and Installation Overview chapters provide you with enough information to install the switch. Other chapters can be left for reference, when needed.

The guide includes these chapters:

- Chapter 1 - Switch Description - Includes a switch overview, key component identification and key technical specifications.
- Chapter 2 - Installation Overview - Includes details of the package contents and an outline of switch installation tasks.
- Chapter 3 - Switch Chassis - Includes switch chassis rack installaion, and system cooling requirements.
- Chapter 4 - Power and Grounding - Includes information on AC power requirements, switch grounding, and powering on the switch.
- Chapter 5 - Port Connections - Includes information on network interfaces, installing optional transceivers, and cabling specifications.
- Chapter 6-Switch Management - Connecting to the switch for management, and information on the system status LEDs.
- Appendix A - Troubleshooting - Information for troubleshooting switch installation and operation.

Related This guide focuses on switch hardware and installation, it does not cover software configuration of the switch. For specific information on how to operate and use the management functions of the switch, see the following guides:

Web Management Guide

CLI Reference Guide
For all safety information and regulatory statements, see the following documents:

Quick Start Guide

Safety and Regulatory Information

Conventions The following conventions are used throughout this guide to show information:

Note: Emphasizes important information or calls your attention to related features or instructions.
\qquad

Caution: Alerts you to a potential hazard that could cause loss of data, or damage the system or equipment.

Warning: Alerts you to a potential hazard that could cause personal injury.

Revision History This section summarizes the changes in each revision of this guide.

January 2016 Revision

This is the first revision of this guide.

Contents

How to Use This Guide 3
Contents 5
Figures 7
Tables 8
1 Switch Description 9
Overview 9
Power-over-Ethernet 9
Key Hardware Components 10
Key Technical Specifications 13
2 Installation Overview 15
Package Contents 15
Switch Installation Tasks 16
3 Switch Chassis 21
General Installation Guidelines 21
Switch Cooling Requirements 22
Rack Cooling 23
How to Install the Switch in a Rack 23
Rack-Mounting Items 24
Rack-Mount Procedure 24
How to Install the Switch on a Shelf or Desktop 26
How to Install the External Power Supply 26
4 Power and Grounding 28
Switch Power Supply 28
Grounding the Chassis 29
How to Connect to AC Power 30
How to Connect to DC Power 31
5 Port Connections 32
Cable Labeling and Connection Records 33
Understanding the Port Status LEDs 34
How to Install an SFP Transceiver 35
How to Connect to Twisted-Pair Copper Ports 36
Copper Cabling Guidelines 37
10/100BASE-TX Pin Assignments 37
1000BASE-T Assignments 38
Power-over-Ethernet 39
Connection Procedure 39
How to Connect to SFP Fiber Optic Ports 40
Connection Procedure 41
6 Switch Management 42
Understanding the System Status LEDs 43
How to Connect to the Console Port 43
How to Reset the Switch 46
Reset to the Saved Configuration File 46
Reset to Factory Default Settings 46
A Troubleshooting 47
Diagnosing LED Indicators 47
System Self-Diagnostic Test Failure 47
Power and Cooling Problems 48
Installation 48
In-Band Access 48
Index 49

Figures

Figure 1: Switch Front Panels 10
Figure 2: Rear Panel 12
Figure 3: Installing the Switch in a Rack 16
Figure 4: Connecting AC Power 17
Figure 5: Connecting DC Power 17
Figure 6: System LEDs 18
Figure 7: Console Port 19
Figure 8: Making a Connection to an RJ-45 Port 20
Figure 9: Switch Cooling (ECS2100-28P and ECS2100-28PP) 22
Figure 10: Switch Cooling (ECS2100-10T/10P/10PE and ECS2100-28T) 22
Figure 11: Attaching the Brackets 24
Figure 12: Installing the Switch in a Rack 25
Figure 13: Attaching the Adhesive Feet 26
Figure 14: AC Power Supply Socket 28
Figure 15: Grounding Terminal 29
Figure 16: AC Power Cord and Power Socket 30
Figure 17: DC Power Cord and Power Socket 31
Figure 18: Port Status LEDs 34
Figure 19: Inserting an SFP Transceiver into a Slot 36
Figure 20: RJ-45 Connector 37
Figure 21: Making Twisted-Pair Connections 39
Figure 22: Making a Connection to an SFP Port 41
Figure 23: System LEDs 43
Figure 24: Console Port 44
Figure 25: Console Port Connection 45
Figure 26: Reset Button 46

Tables

Table 1: Key Technical Specifications 13
Table 2: AC Power Supply Specifications 29
Table 3: Port Status LEDs 34
Table 4: Maximum Twisted-Pair Copper Cable Lengths 36
Table 5: 10/100BASE-TX MDI and MDI-X Port Pinouts 37
Table 6: 1000BASE-T MDI and MDI-X Port Pinouts 38
Table 7: ECS2100 Series PoE Power Budget 39
Table 8: Maximum Gigabit Ethernet Fiber Cable Lengths 40
Table 9: System Status LEDs 43
Table 10: Console Cable Wiring 44
Table 11: Troubleshooting Chart 47

Switch Description

This chapter includes these sections:

- "Overview" on page 9
- "Key Technical Specifications" on page 13

Overview

The ECS2100-10T/10P/10PE are Gigabit Ethernet switches with 8 10/100/ 1000BASE-T ports, and two Small Form Factor Pluggable (SFP) transceiver slots for fiber connectivity.

The ECS2100-28T/28P/28PP are Gigabit Ethernet switches with 24 10/100/ 1000BASE-T ports, and four Small Form Factor Pluggable (SFP) transceiver slots for fiber connectivity.

The switches include an SNMP-based management agent, which provides both inband and out-of-band access for managing the switch. Further, the switches support both web and CLI-based configuration.

Power-over-Ethernet All of the 10/100/1000 Mbps ports on the ECS2100-10P, ECS2100-10PE, ECS210028P, and ECS2100-28PP support both the IEEE 802.3af-2003 and IEEE 802.3at-2009 PoE standards. These switches are excellent choices for supplying power to connected PoE devices such as web cameras, IP telephones, or access points.

Key Hardware The switches consist of several key hardware components. This manual describes Components each specific component, or related components, together with their installation requirements and procedures in each chapter. To understand each component in detail, refer to the relevant section.

Figure 1: Switch Front Panels

(1) $10 / 100 / 1000$ BASE-T RJ-45 Ports
(5) $10 / 100 / 1000 B A S E-T ~ R J-45 ~ P o r t ~ L E D ~$
(2) Combination Gigabit RJ-45/SFP Ports
(3) RJ-45 Console Port
4) System LEDs (Power/PoE Max/Diag)

10/100/1000BASE-T RJ-45 Ports
The switch contains 24 10/100/1000BASE-T RJ-45 ports that support 10/100/ 1000BASE-T copper links to other devices. For more information, see "How to Connect to Twisted-Pair Copper Ports" on page 36.

Port Status LEDs

For information on port status LED indicators, see "Understanding the Port Status LEDs" on page 34.

Console Port

The RJ-45 connector on the front panel right side that is labeled "Console" provides an out-of-band serial connection to a terminal or a PC running terminal emulation software. The port can be used for performing switch monitoring and configuration. For more information, see "How to Connect to the Console Port" on page 43.

Gigabit SFP Slots

The switches contain up to four SFP transceiver slots that operate up to 1 Gbps full duplex. For more information, see "How to Connect to SFP Fiber Optic Ports" on page 40.

PoE Button

Pressing the PoE button on the ECS2100-10P, ECS2100-10PE, ECS2100-28P, and ECS2100-28PP front panel changes the port LEDs to display PoE status. For more information, see "Understanding the System Status LEDs" on page 43.

System LEDs

For information on system status LED indicators, see "Understanding the System Status LEDs" on page 43.

Factory Default Button

Pressing the reset button on the front panel causes the switch to restart or restore factory default settings. For more information, see "How to Reset the Switch" on page 46.

Figure 2: Rear Panel
ECS2100-10T

ECS2100-10PE

ECS2100-10P

ECS2100-28T/ECS2100-28P

ECS2100-28PP

(1) Grounding Terminal
(3) AC Power Socket
(2) DC Power Socket
(4) External Power Supply Connector

Cooling Fans and Vents

The switch must be installed in a properly cooled and ventilated environment. For more information, see "Switch Cooling Requirements" on page 22.

AC Power Socket

The switch requires a $100-240 \mathrm{VAC}, 50-60 \mathrm{~Hz} \mathrm{AC}$ power source. For more information on the switch power input, how to connect it, and how to power-on the switch, see "How to Connect to AC Power" on page 30.

DC Power Socket

The ECS2100-10PE switch requires a 54 VDC, 1.67 A power source. For more information on the switch power input, how to connect it, and how to power-on the switch, see "How to Connect to DC Power" on page 31.

Grounding Terminal

The switch includes a grounding terminal that must be connected to a ground source that provides local earth potential. For more information, see "Grounding the Chassis" on page 29.

Key Technical Specifications

The following table contains key system specifications for the switch.
Table 1: Key Technical Specifications

Item	Specification
Ports	ECS2100-10T/10P/10PE: 8 1000BASE-T RJ-45 ports with Autonegotiation, 2 Gigabit SFP transceiver slots ECS2100-28T/28P/28PP: 24 1000BASE-T RJ-45 ports with Autonegotiation, 4 Gigabit SFP transceiver slots
Network Interface	ECS2100-10T/10P/10PE Ports 1~8: RJ-45 connector, auto MDI/X Ports 9~10: Gigabit SFP transceivers ECS2100-28T/28P/28PP Ports 1~24: RJ-45 connector, auto MDI/X Ports 25~28: Gigabit SFP transceivers
Buffer Architecture	4 Mbytes
Aggregate Bandwidth	104 Gbps
Switching Database	8 K MAC address entries
AC Input Power	ECS2100-10T: AC $100-240 \mathrm{~V}, 50-60 \mathrm{~Hz}, 0.5 \mathrm{~A}$ ECS2100-10P: AC $100-240 \mathrm{~V}, 50-60 \mathrm{~Hz}, 2.1 \mathrm{~A}$ ECS2100-28T: AC $100-240 \mathrm{~V}, 50-60 \mathrm{~Hz}, 0.5 \mathrm{~A}$ ECS2100-28P: AC $100-240 \mathrm{~V}, 50-60 \mathrm{~Hz}, 3.2 \mathrm{~A}$ ECS2100-28PP: AC $100-240 \mathrm{~V}, 50-60 \mathrm{~Hz}, 5.8 \mathrm{~A}$
AC-DC Power Adapter (ECS2100-10PE only)	Input: AC $100-240 \mathrm{~V}, 50-60 \mathrm{~Hz}, 1 \mathrm{~A}$ Output: 54 VDC, 1.67A
Power Consumption	ECS2100-10T: 8 W ECS2100-10P: 160 W ECS2100-10PE: 80 W ECS2100-28T: 20 W ECS2100-28P: 260 W ECS2100-28PP: 490 W ECS2100-28PP+ one external power supply: 950 W
Weight	ECS2100-10T: 816 g (1.8 lb) ECS2100-10P: 2.4 kg (5.34 lb) ECS2100-10PE: 973 g (2.15 lb) ECS2100-28T: 2.2 kg (4.86 lb) ECS2100-28P: 2.8 kg (6.18 lb) ECS2100-28PP: 3.1 kg (6.85 lb)
Size	$(W \times D \times H):$ ECS2100-10T: $19.64 \times 11.71 \times 3.66 \mathrm{~cm}(7.73 \times 4.61 \times 1.44 \mathrm{in}$.) ECS2100-10P: $33.0 \times 20.4 \times 4.26 \mathrm{~cm}(12.99 \times 8.03 \times 1.67 \mathrm{in}$.) ECS2100-10PE: $24.0 \times 15.5 \times 2.65 \mathrm{~cm}(9.44 \times 6.10 \times 1.04 \mathrm{in}$.) ECS2100-28T/28P/28PP: $44 \times 22 \times 4.4 \mathrm{~cm}(17.32 \times 8.66 \times 1.73 \mathrm{in}$.)

Table 1: Key Technical Specifications (Continued)

Item	Specification
Temperature	Operating: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ Operating: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $104^{\circ} \mathrm{F}, \mathrm{ECS} 2100-10 \mathrm{P}$ only) Storage: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Humidity	Operating: 10% to 90% (non-condensing)
Out-of-Band Management	Front panel RJ-45 console port
In-Band Management	SSH, Telnet, SNMP, or HTTP
Software Loading	HTTP, FTP/TFTP in-band
Forwarding Mode	Store-and-forward
Throughput	Wire speed
Flow Control	Full Duplex: IEEE $802.3 x$
	Half Duplex: Back pressure

Installation Overview

This chapter includes these sections:

- "Package Contents" on page 15
- "Switch Installation Tasks" on page 16

Package Contents

After unpacking the switch, check the contents to be sure you have received all the components.

- ECS2100-10T, ECS2100-10P, ECS2100-10PE, ECS2100-28T, ECS2100-28P or ECS2100-28PP Web-Smart Pro Gigabit Ethernet Switch
- AC Power Cord—either US, Continental Europe or UK
- Rack Mounting Kit containing two standard brackets and eight screws for attaching the brackets to the switch.
- 4 adhesive foot pads
- Quick Start Guide
- Regulatory and Safety Information

Optional Item

- Console cable —RJ-45 to DB-9

Note: For other documentations include Installation Guide, Web Management Guide, and CLI Reference Guide can be obtained from www.edge-core.com -> support -> download -> user manual.

Switch Installation Tasks

Follow these tasks to install the switch in your network. For full details on each task, go to the relevant chapter or section by clicking on the link.

Caution: Before installing your switch, first review all the safety statements and guidelines in the Regulatory and Safety Information document.

Task 1 Unpack Package and Check Contents

Unpack your switch and check the package contents to be sure you have received all the items. See "Package Contents" on page 15.

Task 2 Install the Chassis

The switch is designed to be installed in a standard 19-inch equipment rack. Plan your rack installation and install the switch chassis in the rack. Be sure to take into account switch cooling requirements.

Go to the chapter "Switch Chassis"
Figure 3: Installing the Switch in a Rack

(1) Attach the brackets to the switch.
(2) Use the screws supplied with the rack to secure the switch in the rack.

Task 3 Connect AC Power to Power On

Prior to connecting to AC power, assure to connect the chassis ground connection to a known earth ground. Connect the power cord to the AC socket on the switch and to a grounded, 3 -pin, AC power source.

Figure 4: Connecting AC Power

(1) Connect a grounding wire to the grounding terminal.
(2) Connect an external AC power source to the AC power socket of the switch using the supplied AC power cord.

Connect DC Power to Power On (ECS2100-10PE only)

Connect a ground wire to the switch, and then use a DC power cable to connect the switch to a DC power source.

Figure 5: Connecting DC Power

(1) Connect a grounding wire to the grounding terminal.
(2) Connect an external DC power source to the $D C$ power socket of the switch using a $D C$ power cable.

Task 4 Verify Switch Operation

Verify basic switch operation by checking the system LEDs.
When operating normally, the Power and Diag LED should both be on green. If either of these LEDs are on amber, see "Diagnosing LED Indicators" on page 47.

Go to the section "Understanding the System Status LEDs" on page 43
Figure 6: System LEDs

(1) System Status LEDs.

Task 5 Make Initial Configuration Changes

At this point, you may need to make a few basic switch configuration changes before connecting to the network. You can either connect to the switch console port or any RJ-45 port to perform this task.

Through an RJ-45 Port

The switch offers a user-friendly web-based management interface for the configuration of all the unit's features.

You can make initial configuration changes by connecting a PC directly to one of the switch's RJ-45 ports. The switch has a default management IP address of 192.168.2.10 and a subnet mask of 255.255.255.0. You must set your PC IP address to be on the same subnet as the switch (that is, the PC and switch addresses must both start 192.168.2.x).

Log in to the web interface using the default settings:

- Login Name - admin
- Password - admin

Through the Console Port

The serial port's configuration requirements are as follows: 115200 bps, 8 characters, no parity, one stop bit, 8 data bits, and no flow control.

You can log in to the command-line interface (CLI) using default settings: User "admin" with password "admin".

Figure 7: Console Port

(1) Connect console cable to switch's Console port.
(2) Connect console cable to PC's DB-9 COM port.

For information on initial switch configuration:

Refer to the CLI Reference Guide.

Task 6 Install Transceivers and Connect Cables

Install SFP transceivers and connect network cables to port interfaces:

- For RJ-45 ports, use 100-ohm category 3 or better Ethernet cable for 10BASE-T connections, use 100 -ohm category 5 or better Ethernet cable for 100BASE-TX and 1000BASE-T connections.
- Install SFP transceivers and then connect fiber optic cabling to the transceiver ports.

As connections are made, check the port status LEDs to be sure the links are valid.

Go to the chapter "Port Connections"

Figure 8: Making a Connection to an RJ-45 Port

(1) 10/100/1000BASE-T RJ-45 Port.
(2) Twisted-pair Cable with RJ-45 Plug.

Switch Chassis

The switch is designed to be installed in a standard 19-inch equipment rack.
Before continuing with switch installation, first review the general guidelines and switch cooling requirements in this chapter.

This chapter includes these sections:

- "General Installation Guidelines" on page 21
- "How to Install the Switch in a Rack" on page 23
- "How to Install the Switch on a Shelf or Desktop" on page 26
- "Switch Cooling Requirements" on page 27

General Installation Guidelines

Be sure to follow the guidelines below when choosing a location.
The installation location should:

- be able to maintain its temperature within 0 to $50^{\circ} \mathrm{C} / 32$ to $122^{\circ} \mathrm{F}\left(0\right.$ to $40^{\circ} \mathrm{C} /$ 32 to 104° F, ECS2100-10P only) and its humidity within 10% to 90%, noncondensing.
- provide adequate space (approximately five centimeters or two inches) on all sides for proper air flow.
- be accessible for installing, cabling and maintaining the device.
- allow the status LEDs to be clearly visible.
- Make sure twisted-pair cable is always routed away from power lines, fluorescent lighting fixtures and other sources of electrical interference, such as radios and transmitters.
- Make sure that the unit is connected to a separate grounded power outlet and is powered from an independent circuit breaker. As with any equipment, using a filter or surge suppressor is recommended. Verify that the external AC power requirements for the switch can be met as listed under "AC Power Supply Specifications" on page 29.

Switch Cooling Requirements

Wherever the switch is located, be sure to pay close attention to switch cooling requirements. The location should be well ventilated and provide unrestricted airflow at the front, back, and sides of the switch. If the airflow is insufficient, it may cause the switch to overheat and possibly fail.

The ECS2100-28P switch is equipped with one cooling fan and the ECS2100-28PP switch is equipped with three cooling fans. The following figure shows the cool air intake and the hot air exhaust airflow into and from the switch.

Figure 9: Switch Cooling (ECS2100-28P and ECS2100-28PP)

The ECS2100-10T, ECS2100-10P, ECS2100-10PE, and ECS2100-28T use a fanless cooling design. The following figure shows the convective airflow from the switch.

Figure 10: Switch Cooling (ECS2100-10T/10P/10PE and ECS2100-28T)

Rack Cooling When mounting the switch in an enclosed rack or cabinet, be sure to check the following guidelines to prevent overheating:

- Make sure that enough cool air can flow into the enclosure for the equipment it contains.
- Check that the rack or cabinet allows the hot air to exit the enclosure (normally from the top) without circulating back into equipment.
- If the enclosure has sides or doors with ventilation holes, make sure they are not blocked by cables or other obstructions.
- Route cables within the rack or cabinet to maximize the airflow.
- When possible, do not completely fill the rack or cabinet with equipment, allow some unused space within the enclosure for better airflow.

How to Install the Switch in a Rack

When rack mounting the switch, pay particular attention to the following factors:

- Rack Types: You can use any standard EIA 19-inch equipment rack with either two or four posts. The bracket hole pattern should be spaced 1 U (1.75 in . or 4.45 cm) apart.
- Rack Stability: Whenever possible, secure the rack to the building ceiling or floor, particularly if you are located in a region where earthquakes are common.
- Rack Planning: When installing equipment in a rack, first plan how units can be best arranged. Try to always mount the heaviest equipment at the bottom of the rack.
- Temperature: Since the temperature within a rack assembly may be higher than the ambient room temperature, check that the rack-environment temperature is within the specified operating temperature range. See "Switch Cooling Requirements" on page 22.
- Mechanical Loading: Do not place any equipment on top of a rack-mounted unit.
- Circuit Overloading: Be sure that the supply circuit to the rack assembly is not overloaded.
- Grounding: Rack-mounted equipment should be properly grounded.

Rack-Mounting Items Before you start to rack-mount the switch, be sure to have the following items available:

- Four mounting screws for each device you plan to install in a rack-these are not included. Be sure to use the rack mounting screws that are supplied with the rack.
- A screwdriver (Phillips or flathead, depending on the type of screws used).

Rack-Mount To rack mount the switch, follow these steps:
Procedure

Caution: Installing the switch in a rack requires two people: One should position the switch in the rack, while the other secures it using the mounting screws.

1. Attach the brackets to the device using the screws provided in the Rack Mounting Kit.

Figure 11: Attaching the Brackets

2. Following your rack plan, mark the holes in the rack where the switch will be installed.
3. One person should lift the switch into the rack so that it is aligned with the marked holes.
4. The second person should secure the switch in the rack, using four rackmounting screws (not provided).

Figure 12: Installing the Switch in a Rack

(1) Rack Mount Screws
5. If installing a single switch only, go to "Power and Grounding" on page 28.
6. If installing multiple switches, repeat steps 1 to 4 to mount the switches following your rack plan.

Wall Mounting (ECS2100-10PE only)
The ECS2100-10PE can be mounted on a wall.

Caution: For safe operation, install the switch with RJ-45 ports facing up.

(1) Set two screws in the wall 150 mm (5.9 in .) apart.
(2) Slide the switch's wall mounting slots down onto the screws so that the unit is secure.

How to Install the Switch on a Shelf or Desktop

The switch can be installed on any flat surface such as a desktop or shelf. To mount the switch on a flat surface, follow these steps:

1. Attach the four adhesive feet to the bottom of the first switch.

Figure 13: Attaching the Adhesive Feet

(1) Adhesive Feet
2. Set the device on a flat surface near an $A C$ power source, making sure there are at least two inches of space on all sides for proper airflow.
3. If installing a single switch only, go to "How to Connect to AC Power" on page 30 .
4. If installing multiple switches, attach four adhesive feet to each one. Place each device squarely on top of the one below, in any order.

How to Install the External Power Supply

If you have purchased an optional External Power Supply (EPS460W) and Chassis (PS3000), follow the instructions below to connect it to the ECS2100-28PP and to AC power.

Note: The ECS2100-28PP default PoE power budget is 370 W , by purchasing an External Power Supply kit, the ECS2100-28PP can extend its PoE power budget up to 740 W .

(1) External Power Supply-EPS460W

(1) Install the ECS2100-28PP in a standard 19-inch rack and power on.
(2) Install the PS3000 chassis in a standard 19-inch rack.
(3) Install one or more EPS460W PSUs in the chassis. The chassis can support up to three EPS460W PSUs.
4) Use the PSU cable (provided) to connect each EPS460W PSU to an ECS2100-28PP switch.
(5) Connect the AC power cord to power on the EPS460W PSU, and check the LEDs on the PSUs to ensure proper operation. The Link LEDs for connected switches should light up.

Note: For international use, you may need to change the AC line cord. You must use a line cord set that has been approved for the socket type in your country.

Power and Grounding

This chapter focuses on how to connect AC power to the switch, grounding the chassis, and how to power-on the switch.

This chapter includes this sections:

- "Switch Power Supply" on page 28
- "Grounding the Chassis" on page 29
- "How to Connect to AC Power" on page 30

Switch Power Supply

The switch requires power from an external AC power supply that can meet the required specification described in Table 2. A standard AC power socket is located on the rear panel of the switch. The power socket is for the AC power cord.

Figure 14: AC Power Supply Socket

(1) Plug the AC power cord into the socket on the rear of the switch.

Table 2: AC Power Supply Specifications

Item	Description
AC Input	ECS2100-10T: AC 100-240 V, 50-60 Hz, 0.5 A
	ECS2100-10P: AC 100-240 V, 50-60 Hz, 2.1 A
	ECS2100-28T: AC 100-240 V, 50-60 Hz, 0.5 A
	ECS2100-28P: AC 100-240 V, 50-60 Hz, 3.2 A
	ECS2100-28PP: AC 100-240 V, 50-60 Hz, 5.8 A
AC-DC Power Adapter	Input: AC 100-240 V, 50-60 Hz, 1 A
(ECS2100-10PE only)	Output: 54 VDC, 1.67A
Power Supply	100-240 VAC, 50-60 Hz, auto-sensing
Total Power Consumption	ECS2100-10T: 8 W
	ECS2100-10P: 160 W
	ECS2100-10PE: 80 W
	ECS2100-28T: 20 W
	ECS2100-28P: 260 W
	ECS2100-28PP: 490 W
	ECS2100-28PP+ one external power supply: 950 W

Grounding the Chassis

The rear panel of the switch chassis includes a single hole grounding terminal. It must be connected to ground to ensure proper operation and to meet electromagnetic interference (EMI) and safety requirements.

Figure 15: Grounding Terminal

(1) Grounding Wire
(2) Grounding Terminal

Before powering on the switch, ground the switch to earth as described below.

1. Ensure that the rack in which the switch is to be mounted is properly grounded and in compliance with ETSI ETS 300253.
2. Ensure that there is a good electrical connection to the grounding point on the rack (no paint or isolating surface treatment).
3. Disconnect all power cables to the switch.
4. Attach a 6 AWG stranded copper wire to the grounding terminal on the switch.

The switch chassis is connected internally to 0 V . This circuit is connected to the single-hole grounding terminal on the rear panel of the switch (left of the AC power socket). The surface area around this terminal is not painted in order to provide for a good connection.
5. Attach the grounding wire to the ground point on the rack.

Caution: The earth connection must not be removed unless all supply connections have been disconnected.

How to Connect to AC Power

Connect the switch to an AC power source to power on. Verify that the external AC power requirements for the switch can be met as listed below:

ECS2100-10T: AC $100-240 \mathrm{~V}, 50-60 \mathrm{~Hz}, 0.5 \mathrm{~A}$
ECS2100-10P: AC 100-240 V, $50-60 \mathrm{~Hz}, 2.1 \mathrm{~A}$
ECS2100-28T: AC $100-240 \mathrm{~V}, 50-60 \mathrm{~Hz}, 0.5 \mathrm{~A}$
ECS2100-28P: AC 100-240 V, $50-60 \mathrm{~Hz}, 3.2 \mathrm{~A}$
ECS2100-28PP: AC $100-240 \mathrm{~V}, 50-60 \mathrm{~Hz}, 5.8 \mathrm{~A}$
To connect the switch to a power source:

1. Plug the power cord into a grounded, 3 -pin, $A C$ power source.

Figure 16: AC Power Cord and Power Socket

(1) AC Power Cord
(2) AC Power Socket
2. Insert the plug on the other end of the power cord directly into the $A C$ input socket on the back of the switch.

Note: If your country's AC power outlet standards do not match the power plug of the included AC power cord, you will need to change the AC power cord. You must use a cord set that has been approved for the socket type in your country.
3. Check the LED indicators on the switch front panel as the unit is powered on to verify that power is being received. If not, recheck the power cord connections at the AC supply source and back panel power input connector.

How to Connect to DC Power

The ECS2100-10PE includes an AC-DC power adapter. Connect the AC-DC power adapter to the switch and to an AC power source. The AC-DC adapter provides $54 \mathrm{VDC}, 1.67 \mathrm{~A}$ of power to the switch.

Caution: Before connecting the switch to DC power, the grounding terminal screw on the switch rear panel must be connected to earth.

Figure 17: DC Power Cord and Power Socket

(1) DC power socket

Port Connections

This chapter focuses on making connections to switch network interfaces, including how to install optional transceivers, and details on network cable specifications.

This chapter includes these sections:

- "Cable Labeling and Connection Records" on page 33
- "Understanding the Port Status LEDs" on page 34
- "How to Install an SFP Transceiver" on page 35
- "How to Connect to Twisted-Pair Copper Ports" on page 36
- "How to Connect to SFP Fiber Optic Ports" on page 40

Cable Labeling and Connection Records

When planning a network installation, it is essential to label the opposing ends of cables and to record where each cable is connected. Doing so will enable you to easily locate inter-connected devices, isolate faults and change your topology without need for unnecessary time consumption.

To best manage the physical implementations of your network, follow these guidelines:

- Clearly label the opposing ends of each cable.
- Using your building's floor plans, draw a map of the location of all networkconnected equipment. For each piece of equipment, identify the devices to which it is connected.
- Note the length of each cable and the maximum cable length supported by the switch ports.
- For ease of understanding, use a location-based key when assigning prefixes to your cable labeling.
- Use sequential numbers for cables that originate from the same equipment.
- Differentiate between racks by naming accordingly.
- Label each separate piece of equipment.
- Display a copy of your equipment map, including meanings of all abbreviations at each equipment rack.

Understanding the Port Status LEDs

The switch includes LED indicators for each port to indicate link status and network activity. The port LEDs are shown below and described in the following table.

Figure 18: Port Status LEDs

(1) RJ-45 Port Link/Activity LEDs
(2) SFP Port Link/Activity LEDs

Table 3: Port Status LEDs

LED	Condition	Status
1000BASE-T RJ-45 Ports 1-8 (ECS2100-10T/P/PE)		
1000BASE-T RJ-45 Ports 1-24 (ECS2100-28T/P/PP)		
Link/Activity	On/Blinking Amber	Port has a valid 10/100 Mbps link. Blinking indicates traffic on the port.
	On/Blinking Green	Port has a valid 1000 Mbps link. Blinking indicates traffic on the port.
Off	The link is down.	

Gigabit SFP Ports 9-10 (ECS2100-10T/P/PE)
Gigabit SFP Ports 25-28 (ECS2100-28T/P/PP)
Link/Activity On/Blinking Amber Port has a valid 100 Mbps link. Blinking indicates traffic on the port.

On/Blinking Green Port has a valid 1000 Mbps link. Blinking indicates traffic on the port.

Off
The link is down.

[^0]
How to Install an SFP Transceiver

The switch provides slots for optional SFP transceivers. The supported transceiver types are listed below:

- 1000BASE-SX
- 1000BASE-LX
- 1000BASE-ZX
- 1000BASE-BX10
- 1000BASE-BX20
- 100BASE-BX20

Note: SFP transceivers are hot-swappable. The switch does not need to be powered off before installing or removing a transceiver.

Note: SFP transceivers are not provided in the switch package.

To install an SFP transceiver, do the following:

1. Consider network and cabling requirements to select an appropriate transceiver type that is also compatible with the switch transceiver support.
2. If the SFP slot is covered with a rubber protective cap, remove the cap and keep it for later replacement.
3. Insert the transceiver with the optical connector facing outward and the slot connector facing down. Note that SFP transceivers are keyed so they can only be installed in the correct orientation.
4. Slide the transceiver into the slot until it clicks into place. If you do not immediately connect a cable to the port, use a rubber protective cap to keep the transceiver optics clean.

Figure 19: Inserting an SFP Transceiver into a Slot

(1) SFP Transceiver
(2) SFP Slot

Note: To remove a transceiver: First disconnect the network cable, then pull the tab to remove the transceiver from the slot.

How to Connect to Twisted-Pair Copper Ports

The RJ-45 ports on the switch support automatic MDI/MDI-X pinout configuration, which enables you to use standard straight-through twisted-pair cables to connect to any other network device (PCs, servers, switches, routers, or hubs).

The connection requires an unshielded twisted-pair (UTP) or shielded twisted-pair (STP) cable with RJ-45 connectors at both ends.

Table 4: Maximum Twisted-Pair Copper Cable Lengths

Cable Type	Maximum Cable Length	Connector
1000BASE-T		
Category 5, 5e, or 6 100-ohm UTP or STP	$100 \mathrm{~m}(328 \mathrm{ft})$	$\mathrm{RJ}-45$
100BASE-TX	$100 \mathrm{~m} \mathrm{(328} \mathrm{ft)}$	RJ-45
Category 5 or better 100-ohm UTP or STP	$100 \mathrm{~m}(328 \mathrm{ft})$	RJ-45
10BASE-T		

Copper Cabling Guidelines

To ensure proper operation when installing the switch into a network, make sure that the current cables are suitable for 10BASE-T, 100BASE-TX, or 1000BASE-T operation. Check the following criteria against the current installation of your network:

- Cable type: Unshielded twisted pair (UTP) or shielded twisted pair (STP) cables with RJ-45 connectors; Category 5, 5e or better cable for 1000BASE-T connections, Category 5 or better for 100BASE-TX connections, and Category 3 or better for 10BASE-T connections.
- Protection from radio frequency interference emissions
- Electrical surge suppression
- Separation of electrical wires (switch related or other) and electromagnetic fields from data based network wiring
- Safe connections with no damaged cables, connectors or shields

10/100BASE-TX Pin Assignments

All 100BASE-TX RJ-45 ports support automatic MDI/MDI-X operation, so you can use straight-through or crossover cables for all network connections to PCs, switches, or hubs. In straight-through cable, pins 1,2,3, and 6, at one end of the cable, are connected straight through to pins 1,2,3, and 6 at the other end of the cable.

Figure 20: RJ-45 Connector

(1) RJ-45 Pin Numbers

Table 5: 10/100BASE-TX MDI and MDI-X Port Pinouts

Pin	MDI Signal Name*	MDI-X Signal Name
1	Transmit Data plus (TD+)	Receive Data plus (RD+)
	-52V power (Negative Vport)	GND (Positive Vport)
2	Transmit Data minus (TD-)	Receive Data minus (RD-)
	-52V power (Negative Vport)	GND (Positive Vport)
3	Receive Data plus (RD+)	Transmit Data plus (TD+)
	GND (Positive Vport)	-52V power (Negative Vport)
4	-52V power (Negative Vport)	GND (Positive Vport)
5	-52V power (Negative Vport)	GND (Positive Vport)

Table 5: 10/100BASE-TX MDI and MDI-X Port Pinouts

Pin	MDI Signal Name*	MDI-X Signal Name
6	Receive Data minus (RD-)	Transmit Data minus (TD-)
	GND (Positive Vport)	-52V power (Negative Vport)
7	GND (Positive Vport)	-52V power (Negative Vport)
8	GND (Positive Vport)	-52V power (Negative Vport)

* The " + " and "-" signs represent the polarity of the wires that make up each wire pair.

1000BASE-T All 1000BASE-T ports support automatic MDI/MDI-X operation, so you can use Assignments straight-through cables for all network connections to PCs, servers, or switches.

The table below shows the 1000BASE-T MDI and MDI-X port pinouts. These ports require that all four pairs of wires be connected. Note that for 1000BASE-T operation, all four pairs of wires are used for both transmit and receive.

Table 6: 1000BASE-T MDI and MDI-X Port Pinouts

Pin	MDI Signal Name	MDI-X Signal Name
1	Bi-directional Pair A Plus (BI_DA+)	Bi-directional Pair B Plus (BI_DB+)
	-52V power (Negative Vport)	GND (Positive Vport)
2	Bi-directional Pair A Minus (BI_DA-)	Bi-directional Pair B Minus (BI_DB-)
	-52V power (Negative Vport)	GND (Positive Vport)
3	Bi-directional Pair B Plus (BI_DB+)	Bi-directional Pair A Plus (BI_DA+)
	GND (Positive Vport)	-52V power (Negative Vport)
4	Bi-directional Pair C Plus (BI_DC+)	Bi-directional Pair D Plus (BI_DD+)
	-52V power (Negative Vport)	GND (Positive Vport)
5	Bi-directional Pair C Minus (BI_DC-)	Bi-directional Pair D Minus (BI_DD-)
	-52V power (Negative Vport)	GND (Positive Vport)
6	Bi-directional Pair B Minus (BI_DB-)	Bi-directional Pair A Minus (BI_DA-)
	GND (Positive Vport)	-52V power (Negative Vport)
7	Bi-directional Pair D Plus (BI_DD+)	Bi-directional Pair C Plus (BI_DC+)
	GND (Positive Vport)	-52V power (Negative Vport)
8	Bi-directional Pair D Minus (BI_DD-)	Bi-directional Pair C Minus (BI_DC-)
	GND (Positive Vport)	-52V power (Negative Vport)

1000BASE-T Cable Requirements

All Category 5 UTP cables that are used for 100BASE-TX connections should also work for 1000BASE-T, providing that all four wire pairs are connected. However, it is recommended that for all critical connections, or any new cable installations, Category 5e (enhanced Category 5) or Category 6 cable should be used. The Category 5 e and 6 specifications include test parameters that are only recommendations for Category 5. Therefore, the first step in preparing existing Category 5 cabling for running 1000BASE-T is a simple test of the cable installation to be sure that it complies with the IEEE 802.3-2008 standards.

Power-over-Ethernet The ECS2100 Series PoE switches support both IEEE 802.3af and IEEE 802.3at-2009 PoE standards. These switches are excellent choices for supplying power to connected PoE devices such as web cameras, IP telephones, or access points.

Table 7: ECS2100 Series PoE Power Budget

	ECS2100-10PE	ECS2100-10P	ECS2100-28P	ECS2100-28PPECS2100- 28PP with one external power supply
Total PoE Power Budget	65 W	125 W	200 W	370 W
Ports supply up to 15.4 W simultaneously Ports supply up to 30 W simultaneously	8	12	740 W	

Any PoE-compliant device attached to a port can directly draw power from the switch over the Ethernet cable without requiring its own separate power source. This capability gives network administrators centralized power control for devices such as IP phones and wireless access points, which translates into greater network availability.

For each attached PoE-compliant device, the switch automatically senses the load and dynamically supplies the required power. The switch delivers power to a device using the wire pairs in UTP or STP cable.

Connection Procedure Follow these steps to connect cables to 1000BASE-T RJ-45 twisted-pair copper ports.

1. Attach one end of a twisted-pair cable segment to the device's RJ-45 connector.

Figure 21: Making Twisted-Pair Connections

(1) 1000BASE-T RJ-45 Port
(2) Category 5, 5e, or 6 Cable

1. Attach the other end to an available port on the switch. Make sure each twisted pair cable does not exceed 100 meters (328 ft) in length.
2. As each connection is made, the Link LED (on the switch) corresponding to each port will turn on green to indicate that the connection is valid.

How to Connect to SFP Fiber Optic Ports

The switch provides four slots for SFP-compliant fiber-optic transceivers.
Note that all 1000BASE fiber optic ports operate at 1 Gbps full duplex. All 100BASE fiber optic ports operate at 100 Mbps full duplex.

Table 8: Maximum Gigabit Ethernet Fiber Cable Lengths

Cable Type	Fiber Bandwidth	Maximum Cable Length	Connector
1000BASE-SX			
62.5/125 micron multimode	$160 \mathrm{MHz} / \mathrm{km}$	2-220 m (7-722 ft)	LC
	$200 \mathrm{MHz} / \mathrm{km}$	2-275 m (7-902 ft)	LC
50/125 micron multimode	$400 \mathrm{MHz} / \mathrm{km}$	2-500 m (7-1641 ft)	LC
	$500 \mathrm{MHz} / \mathrm{km}$	2-550 m (7-1805 ft)	LC
1000BASE-LX			
9/125 micron single-mode	N/A	$2 \mathrm{~m}-10 \mathrm{~km}$ ($7 \mathrm{ft}-6.2$ miles)	LC
1000BASE-LH			
9/125 micron single-mode	N/A	$2 \mathrm{~m}-80 \mathrm{~km}$ (7 ft - 50 miles)	LC
1000BASE-BX10			
9/125 micron single-mode	simplex fiber	$2 \mathrm{~m}-10 \mathrm{~km}$ (7 ft-6.2 miles)	LC
1000BASE-BX20			
9/125 micron single-mode	simplex fiber	$2 \mathrm{~m}-20 \mathrm{~km}$ ($7 \mathrm{ft}-12.4$ miles)	LC
100BASE-BX20			
9/125 micron single-mode	simplex fiber	$2 \mathrm{~m}-20 \mathrm{~km}$ ($7 \mathrm{ft}-12.4$ miles)	LC

Note: The length of fiber optic cable for a single switched link should not exceed the relevant standards specified in this section. However, power budget constraints should also be considered when calculating the maximum fiber optic cable length for a particular link.
Note: Maximum distances may vary for different SFP vendors.

Connection Procedure Follow these steps to connect cables to SFP transceiver ports.

Warning: This switch uses lasers to transmit signals over fiber optic cable. The lasers are compliant with the requirements of a Class 1 Laser Product and are inherently eye safe in normal operation. However, you should never look directly at a transmit port when it is powered on.

Warning: When selecting a fiber SFP device, considering safety, please make sure that it can function at a temperature that is not less than the recommended maximum operational temperature of the product. You must also use an approved Laser Class 1 SFP transceiver.

1. Remove and keep the fiber port's rubber plug. When not connected to a fiber cable, the rubber plug should be replaced to protect the optics.
2. Check that the fiber terminators are clean. You can clean the cable plugs by wiping them gently with a clean tissue or cotton ball moistened with a little ethanol. Dirty fiber terminators on fiber optic cables will impair the quality of the light transmitted through the cable and lead to degraded performance on the port.
3. Connect one end of the cable to the SFP port on the switch and the other end to the SFP port on the other device. Since SFP connectors are keyed, the cable can be attached in only one orientation.

Figure 22: Making a Connection to an SFP Port

4. As a connection is made, check the Link LED on the switch to be sure that the connection is valid.

Note: Be sure to secure cables properly and route them away from the switch without exceeding the minimum bending radius for fiber cables (typically a few inches). Use cable ties to bundle cables together and secure coiled loops of excess cable. Do not let cables hang free supporting their own weight or pull in any way that puts stress on the connectors.

Switch Management

The switches include a management agent that allows you to configure or monitor the switch using its embedded management software. To manage the switch, you can make a direct connection to the console port (out-of-band), or you can manage it through a network connection (in-band) using Telnet, Secure Shell (SSH), a web browser, or SNMP-based network management software.

For a detailed description of the switch's software features, refer to the Web Management Guide and CLI Reference Guide.

This chapter includes these sections:

- "Understanding the System Status LEDs" on page 43
- "How to Connect to the Console Port" on page 43
- "How to Reset the Switch" on page 46

Understanding the System Status LED

The switch includes a display panel of key system LED indicators. The REDs, which are located on the front panel, are shown below and described in the following table.

Figure 23: System LED

(1) System Status LED.

Table 9: System Status LED

LED	Condition	Status
Power/PoE Max	On Green	Internal power operating normally.
	On Amber	The PoE device power draw on the switch has reached the system limitation.
Off	No AC power is connected or the internal power supply has failed.	
Diag (Diagnostic)	On Green	The system diagnostic test has completed successfully.
	Flashing Green	System diagnostic in progress.
	Off	System boot up failed.

How to Connect to the Console Port

The RJ-45 Console port on the front panel of the switch is used to connect a console device to the switch for out-of-band console configuration. The console device can be a PC or workstation running a VT-100 terminal emulator, or a VT-100 terminal. A console cable is supplied with the switch for connecting to a PC's RS-232 serial DB-9 DTE (COM) port.

Note: To connect to notebooks or other PCs that do not have a DB-9 COM port, use a USB-to-male DB-9 adapter cable (not included with the switch).

Figure 24: Console Port

(1) Console port.

The following table describes the pin assignments used in the console cable.
Table 10: Console Cable Wiring

Switch's RJ-45 Console Port	Null Modem	PC's 9-Pin DTE Port
6 RXD (receive data)	<----	3 TXD (transmit data)
3 TXD (transmit data)	------------------>	2 RXD (receive data)
4,5 SGND (signal ground)	---	5 SGND (signal ground)

No other pins are used.

The serial port's default settings are as follows:

- Default Baud rate—115200 bps
- Character Size-8 Characters
- Parity—None
- Stop bit—One
- Data bits-8
- Flow control-None

Figure 25: Console Port Connection

Follow these steps to connect to the Console port:

1. Connect one end of the included RJ-45 to DB-9 serial cable to a DB-9 COM port connector on a management PC.
2. Plug in the RJ-45 end of the serial cable to the Console port on the switch.
3. Configure the PC 's COM port required settings using VT-100 terminal emulator software (such as HyperTerminal) running on the management PC. The switch's default console port settings are:

- 115200 bps, 8 data bits, 1 -stop bit and no parity

4. Log in to the command-line interface (CLI) using one of the default user login settings:

- User - admin,
- Password - admin
or
- User - guest
- Password - guest

The switch also offers a user-friendly web-based management interface for the configuration of all the unit's features.

You can make initial configuration changes by connecting a PC directly to one of the switch's RJ-45 ports. The switch has a default management IP address of 192.168.2.10 and a subnet mask of 255.255.255.0. You must set your PC IP address to be on the same subnet as the switch (that is, the PC and switch addresses must both start 192.168.2.x).

Log in to the web interface using the default settings:

- Login Name - admin
- Password — admin

Note that the guest default user login will only allow a user to view switch parameter data. For a detailed description of connecting to the console and using the switch's command line interface (CLI), refer to the CLI Reference Guide.

How to Reset the Switch

The Reset button located on the front right side panel of the switch can be used to restart the device and set the configuration back to either the currently saved configuration or the factory default settings.

Reset to the Saved

 Configuration FilePress the Reset button for less than 5 seconds to restart the system software using the current saved configuration file settings. Any unsaved changes in the curerntly running configuration will be lost and the only the saved settings in the startup configuration file will be used when the switch reboots.

Reset to Factory Default Settings

Press the Reset button for more than 5 seconds to restart the system software using the factory default settings. Any unsaved changes in the currently running configuration will be lost. The saved startup configuration file will still be available to select within the switch user interface, if needed.

Caution: Pressing the reset button will lose any unsaved changes in the running switch configuration.

Figure 26: Reset Button

Troubleshooting

Diagnosing LED Indicators

Table 11: Troubleshooting Chart

Symptom	Action	
Power LED is Off	\bullet	Check connections between the switch, the power cord, and the AC power outlet. Check the AC power outlet is supplying 110-240 VAC.
	Contact your dealer for assistance.	

Link/Act LED is Off • Verify that the switch and attached device are powered on.

- Check the cable connectors are firmly plugged into the switch and corresponding device.
- If the switch is installed in a rack, check the connections to the punch-down block and patch panel.
- Verify that the proper cable type is used and its length does not exceed specified limits.
- Check the attached device and cable connections for possible defects. Replace the defective cable if necessary.

System Self-Diagnostic Test Failure

If the Diag LED indicates a failure of the system power-on-self-test (POST), you can use a console connection to view the POST results. The POST results may indicate a failed component or help troubleshoot the problem. For more information on connecting to the console port and using the CLI, refer to the CLI Reference Guide.

Note a POST failure normally indicates a serious hardware fault that cannot be rectified or worked around. If you encounter a POST failure, you should contact your dealer for assistance.

Power and Cooling Problems

If a power indicator does not turn on when the power cord is plugged in, you may have a problem with the power outlet, power cord, or internal power supply. However, if the switch shuts down after operating for a continuous period, check for loose power connections, power losses or surges at the power outlet. If you still cannot isolate the problem, the internal power supply may be defective.

Installation

Verify that all system components have been properly installed. If one or more components appear to be malfunctioning (such as the power cord or network cabling), test them in an alternate environment where you are sure that all the other components are functioning properly.

In-Band Access

You can access the management agent in the switch through a connection to any port using Telnet, a web browser, or other network management software tools. However, you must first configure the switch with a valid IP address, subnet mask, and default gateway. If you have trouble establishing a link to the management agent, check to see if you have a valid network connection. Then verify that you entered the correct IP address. Also, be sure the switch port has not been disabled. If it has not been disabled, then check the network cabling that connects your remote location to the switch.

Index

Numerics

10 Mbps collision domain 40
10 Mbps connectivity rules 40
10/100 PIN assignments 37
1000BASE fiber cable lengths 40
1000BASE-T PIN assignments 38

10BASE-T

cable lengths 40

A

adhesive feet, attaching 26
air flow requirements 21

B

brackets, attaching 24
buffer size 13

C

cable
Ethernet cable compatibility 37
labeling and connection records 33
connectivity rules
10 Mbps 40
console port
pin assignments 43
console port, pin assignments 43
contents of package 15
cord sets, international 31

D
 diagnosing LED indicators 47

E

electrical interference, avoiding 21
equipment checklist 15
Ethernet connectivity rules 40

I

in-band access 48
indicators, LED 34, 43
installation
power requirements 21
site requirements 21
installation troubleshooting 48
introduction 9, 15

L

laser safety 41
LED indicators
port 34
PWR 43
location requirements 21

M

management
out-of-band 42
web-based 42

0

out-of-band management 42

P

package contents 15
pin assignments
console port 43
power and cooling problems 48
Power-over-Ethernet 39

R

rubber foot pads, attaching 26

S

screws for rack mounting 24
site selelction 21
specifications
environmental 14
status LEDs 34, 43
surge suppressor, using 21

Index

W

web-based management 42

Declaration of Conformity (DoC) can be obtained from www.edge-core.com -> support -> download -> declarations \& certifications

[^0]: * PoE Mode button is pressed (ECS2100-10P/ECS2100-10PE/ECS2100-28P/ECS2100-28PE)

